Linear Vs Moving Average Trendlinje


Excel Trendlines. En av de enkleste metodene for å gjette en generell trend i dataene er å legge til en trendlinje for et diagram. Trendlinjen er litt lik en linje i et linjediagram, men den kobler ikke hvert datapunkt nettopp som en linje diagram representerer en trendlinje alle dataene Det betyr at mindre unntak eller statistiske feil vunnet t distrahere Excel når det gjelder å finne den riktige formelen I noen tilfeller kan du også bruke trendlinjen til å prognose fremtidige data. Kort som støtter trendlines. Trendlinjen kan legges til 2D-diagrammer, for eksempel område, linje, kolonne, linje, lager, XY-scatter og boble. Du kan ikke legge til en trendlinje til 3-D, Radar, Pie, Area eller Donut charts. Adding en trendlinje. Når du har opprettet et diagram, høyreklikker du på dataserien og velger Legg til trendlinje En ny meny vises til venstre for diagrammet. Her kan du velge en av trendlinjetyperne ved å klikke på en av radioknappene. trendlinjene, er det stillingen kalt Display R-kvadrert verdi på diagrammet Det sho ws deg hvordan en trendlinje er montert på dataene Det kan få verdier fra 0 til 1 Jo nærmere verdien er til, desto bedre passer den til diagrammet ditt. Trendlinetyper. Linje trendlinje. Denne trendlinjen brukes til å lage en rett linje for en enkel , lineære datasett Dataene er lineære dersom systemdatapunktene ligner en linje. Den lineære trendlinjen indikerer at noe øker eller avtar med jevn hastighet. Her er et eksempel på datasalg for hver måned. Logaritmisk trendlinje. Den logaritmiske trendlinjen er nyttig når du skal håndtere data der endringshastigheten øker eller avtar raskt og stabiliserer seg. Ved en logaritmisk trendlinje kan du bruke både negative og positive verdier. Et godt eksempel på en logaritmisk trendlinje kan være en økonomisk krise Først Arbeidsledigheten øker, men etter en stund stabiliserer situasjonen. Polynomisk trendlinje. Denne trendlinjen er nyttig når du arbeider med oscillerende data - for eksempel når du analyserer gevinster og tap over en la rge datasett Graden av polynomet kan bestemmes av antall datasvingninger eller antall bøyer, med andre ord, åsene og dalene som vises på kurven. En rekkefølge 2 polynomisk trendlinje har vanligvis en bakke eller dal Bestill 3 har vanligvis en eller to åser eller daler Bestilling 4 har generelt opptil tre. Følgende eksempel illustrerer forholdet mellom hastighet og drivstofforbruk. Strømtrening. Denne trendlinjen er nyttig for datasett som brukes til å sammenligne måleresultater som øker på forhåndsbestemt rate For eksempel akselerasjonen av en racerbil med ett sekunders intervaller. Du kan ikke opprette en strømtrendline hvis dataene inneholder null eller negative verdier. Eksponentiell trendlinje. Den eksponentielle trendlinjen er mest nyttig når datavarene stiger eller faller på en stadig økende priser Det brukes ofte i naturvitenskap Det kan beskrive en populasjon som vokser raskt i etterfølgende generasjoner Du kan ikke opprette en eksponentiell trendlinje hvis dataene dine inneholder null eller negativ verdi. Et godt eksempel på denne trendlinjen er henfallet til C-14. Som du kan se dette er et perfekt eksempel på en eksponentiell trendlinje fordi R-kvadratverdien er nøyaktig 1.Movende gjennomsnitt. glatter linjene for å vise et mønster eller en trend tydeligere Excel gjør det ved å beregne det bevegelige gjennomsnittet av et bestemt antall verdier som er angitt av et Periode-alternativ, som som standard er satt til 2 Hvis du øker denne verdien, beregnes gjennomsnittet fra flere datapunkter, slik at linjen blir jevnere. Det glidende gjennomsnittet viser trender som ellers ville være vanskelig å se på grunn av støy i dataene. Et godt eksempel på en praktisk bruk av denne trendlinjen kan være et Forex-marked. En trendlinje er en linje overlappet på et diagram som avslører den generelle retningen til dataene Google Charts kan automatisk generere trender for Scatter Charts, Bar Charts, Kolonnediagrammer og Linjediagrammer. Google Charts støtter tre typer trendlinjer lineær, polynom og e xponential. Linear trendlines. A lineær trendlinje er den rette linjen som nærmest tilnærmer dataene i diagrammet. For å være presis, er det linjen som minimerer summen av kvadratiske avstander fra hvert punkt til den. I diagrammet nedenfor kan du se en lineær trendlinje på et scatterdiagram som sammenligner alderen av sukkeraksler med diameteren på trunken. Du kan svinge over trendlinjen for å se ligningen beregnet av Google Charts 4 885 ganger diameteren 0 730. Dette avsnittet krever en nettleser som støtter JavaScript og iframes. To tegne en trendlinje på et diagram, bruk trendlinjene alternativet og spesifiser hvilken dataserie som skal brukes. Linje trendlinjer er den vanligste typen trendlinje Men noen ganger er en kurve best for å beskrive data, og for det vil vi trenge en annen type av trendlinje. Eksponentielle trendlinjer. Hvis dataene dine er best forklart av en eksponentiell for skjemaet e b, kan du bruke typeattributtet til å spesifisere en eksponentiell trendlinje, som vist nedenfor. Denne delen krever en nettleser som støtter JavaScript og iframes. Merk I motsetning til lineære trendlinjer finnes det flere forskjellige måter å beregne eksponentielle trendlinjer. Vi gir bare én metode akkurat nå, men vil støtte mer i fremtiden, og det er mulig at navnet eller oppførselen til den nåværende eksponensielle trendlinjen vil forandre. For dette diagramet bruker vi også visibleInLegend sant til å vise eksponensiell kurve i legend. Changing the color. By default er trendlinjene fargede det samme som dataserien, men lettere. Du kan overstyre det med fargeattributtet Her kartlegger vi hvor mange siffer som er beregnet etter år i en beregningsfull fruktbar periode, og fargelegger den eksponentielle trendlinjen grønt. Denne delen krever en nettleser som støtter JavaScript og iframes. Here er trendlinjene spec. Polynomial trendlines. To generere en polynomisk trendlinje, spesifiser type polynomial og en grad Bruk med forsiktighet, siden de noen ganger kan føre til villedende resultater I eksemplet nedenfor, hvor et grovt lineært datasett er plottet med en kubisk grad 3 trendlinje. Denne delen krever en nettleser som støtter JavaScript og iframes. Merk at plummet etter det siste datapunktet bare er synlig fordi vi kunstig utvidet den horisontale akse til 15 Uten innstilling til 15, ville det ha sett slik ut. Denne delen krever en nettleser som støtter JavaScript og iframes. Same data, samme polynomial, annet vindu på data. Options Full HTML. Changing opacity og line width. You kan endre gjennomsiktigheten av trendlinjen ved å sette opacity til en verdi mellom 0 0 og 1 0, og linjebredden ved å sette lineWidth-alternativet. Denne delen krever en nettleser som støtter JavaScript og iframes. LineWidth-alternativet vil være nok for de fleste bruksområder, men hvis du liker utseendet, er det et punktSize-alternativ som kan brukes til å tilpasse størrelsen på de valgbare punktene i trendlinjen. Denne delen krever en nettleser som støtter JavaScript og iframes. Just som lys er både en bølge og en partikkel, en trendlinje er både en linje og en rekke punkter. Hva brukerne ser er avhengig av hvordan de interagerer med det normalt en linje, men når de svinger over trendlinjen, vil et bestemt punkt bli uthevet. Dette punktet vil ha en diameter som er lik den trendlinjepunktstørrelsen hvis den er definert, otherwise. the globale punktSize hvis det er definert, ellers. Men hvis du setter det globale eller trendlinjepunktet til alternativet, vil alle de valgbare punktene bli vist, uavhengig av trendlinjen s lineWidth. Options Full HTML. Making poeng visible. Trendlines er constucted ved å stempling en haug med prikker på diagrammet Trenden linjen s pointsVisible alternativet bestemmer om poengene for en bestemt trendlinjen er synlig Standardalternativet for alle trendlinjene er sant, men hvis du ønsket å slå av punktsynligheten for din første trendlinje, angi false. The chart below demonstrerer å kontrollere synligheten av po Ints på en trendlinje basis. Denne delen krever en nettleser som støtter JavaScript og iframes. Options Full HTML. Changing etiketten. Som standard, hvis du velger synligInLegend, viser etiketten ligningen i trendlinjen. Du kan bruke labelInLegend til å spesifisere en annen etikett. Her viser vi en trendlinje for hver av to serier, setter etikettene i legenden til feillinje for serie 0 og testlinjeserien 1. Dette avsnittet krever en nettleser som støtter JavaScript og iframes. Bestemmelseskoeffisienten kalt R2 i statistikk, identifiserer hvor tett en trendlinksmatcher dataene En perfekt korrelasjon er 1 0, og en perfekt antikorrelasjon er 0 0. Du kan skildre R2 i legenden av diagrammet ved å sette showR2-alternativet til ekte. Denne seksjonen krever en nettleser som støtter JavaScript og iframes. Unntatt som ellers nevnt, er innholdet på denne siden lisensiert under Creative Commons Attribution 3 0 Lisens og kodeksempler er lisensiert under Apache 2 0-lisensen. For detaljer, se våre nettstedspolitikker Java er et registrert varemerke for Oracle og dets tilknyttede selskaper. 23, 2017.Product Info. Moving gjennomsnittlig og eksponensiell utjevning modeller. Som et første skritt i å bevege seg ut over gjennomsnittlige modeller, kan tilfeldige gange modeller, og lineære trendmodeller, nonseasonal mønstre og trender bli ekstrapolert ved hjelp av en flytende gjennomsnitt eller utjevningsmodell. Den grunnleggende Forutsetningen bak gjennomsnittlige og utjevningsmodeller er at tidsserien er lokalt stasjonær med et sakte varierende gjennomsnitt. Derfor tar vi et lokalt lokalt gjennomsnitt for å estimere nåverdien av gjennomsnittet og deretter bruke det som prognosen for nær fremtid. Dette kan vurderes som et kompromiss mellom den gjennomsnittlige modellen og den tilfeldige gange uten drift modell Den samme strategien kan brukes til å estimere og ekstrapolere en lokal trend. Et glidende gjennomsnitt kalles ofte en glatt versjon av den opprinnelige serien fordi kortsiktig gjennomsnittlig har effekten av utjevning av støtene i den opprinnelige serien Ved å justere graden av utjevning av bredde av glidende gjennomsnitt, kan vi håpe å finne en slags optimal balanse mellom pe rformance av de gjennomsnittlige og tilfeldige gangmodeller Den enkleste typen gjennomsnittsmodell er det enkle, likevektede flytende gjennomsnittet. Forventningen for verdien av Y på tidspunktet t 1 som er laget ved tid t, er det enkle gjennomsnittet av de siste m observasjoner. Her og andre steder vil jeg bruke symbolet Y-hatten til å utgjøre en prognose av tidsserien Y laget så tidlig som mulig før en bestemt modell. Dette gjennomsnittet er sentrert i perioden t-m 1 2, noe som innebærer at estimatet av det lokale gjennomsnittet vil ha en tendens til å ligge bak den sanne verdien av det lokale gjennomsnittet med ca. m 1 2 perioder. Således sier vi at gjennomsnittsalderen for dataene i det enkle glidende gjennomsnittet er m 1 2 i forhold til perioden for prognosen beregnes dette er hvor lang tid prognosene vil ha til å ligge bak vendepunkter i dataene. For eksempel, hvis du er gjennomsnittlig de siste 5 verdiene, vil prognosene være ca 3 perioder sent i å svare på vendepunkt. Merk at hvis m 1, Den enkle glidende SMA-modellen er ekvivalent med den tilfeldige turmodellen uten vekst Hvis m er veldig stor i forhold til lengden på estimeringsperioden, er SMA-modellen tilsvarlig for den gjennomsnittlige modellen. Som med hvilken som helst parameter i en prognosemodell, er det vanlig å justere verdien av ki n for å få den beste pasienten til dataene, dvs. de minste prognosefeilene i gjennomsnitt. Her er et eksempel på en serie som ser ut til å vise tilfeldige svingninger rundt et sakte varierende middel. Først må vi prøve å passe den med en tilfeldig spasertur modellen, som tilsvarer et enkelt bevegelige gjennomsnitt på 1 sikt. Den tilfeldige turmodellen reagerer veldig raskt på endringer i serien, men ved å gjøre det plukker mye av støyen i dataene de tilfeldige svingningene samt signalet den lokale mener Hvis vi i stedet prøver et enkelt glidende gjennomsnitt på 5 vilkår, får vi et smidigere sett med prognoser. Det 5-termens enkle glidende gjennomsnittet gir betydelig mindre feil enn den tilfeldige turmodellen i dette tilfellet Gjennomsnittsalderen for dataene i dette prognosen er 3 5 1 2, slik at den har en tendens til å ligge bak vendepunkter med om lag tre perioder. For eksempel synes det å ha oppstått en nedgang i perioden 21, men prognosene vender seg ikke til flere perioder senere. langsiktige prognoser fra SMA mod el er en horisontal rett linje, akkurat som i den tilfeldige turmodellen. Således antar SMA-modellen at det ikke er noen trend i dataene. Mens prognosene fra den tilfeldige turmodellen ganske enkelt er lik den siste observerte verdien, vil prognosene fra SMA-modellen er lik et vektet gjennomsnitt av de siste verdiene. Forsikringsgrensene beregnes av Statgraphics for de langsiktige prognosene for det enkle glidende gjennomsnittet, blir ikke større enn forventningshorisonten øker. Dette er åpenbart ikke riktig. Dessverre er det ingen underliggende statistisk teori som forteller oss hvordan konfidensintervallene skal utvides for denne modellen. Det er imidlertid ikke så vanskelig å beregne empiriske estimater av konfidensgrensene for lengre horisont-prognoser. For eksempel kan du sette opp et regneark der SMA-modellen vil bli brukt til å prognose 2 trinn foran, 3 trinn foran osv. i den historiske dataprøven. Du kan deretter beregne utvalgsstandardavvikene til feilene ved hver prognose h orizon, og deretter konstruere konfidensintervaller for langsiktige prognoser ved å legge til og trekke ut multipler av passende standardavvik. Hvis vi prøver et 9-glatt simpelt glidende gjennomsnitt, får vi enda jevnere prognoser og mer av en slående effekt. Gjennomsnittsalderen er nå 5 perioder 9 1 2 Hvis vi tar et 19-årig glidende gjennomsnitt, øker gjennomsnittsalderen til 10. Merk at prognosene nå ligger nede etter vendepunkter med ca 10 perioder. Hvor mye utjevning er best for denne serien Her er et bord som sammenligner deres feilstatistikk, også inkludert et 3-årig gjennomsnitt. Modell C, det 5-årige glidende gjennomsnittet, gir den laveste verdien av RMSE med en liten margin over 3 og 9-siktene, og deres andre statistikker er nesten identiske Så, blant modeller med svært like feilstatistikk, kan vi velge om vi foretrekker litt mer respons eller litt mer glatt i prognosene. Tilbake til toppen av siden. Bronse s Enkel eksponensiell utjevning eksponentielt vektet glidende gjennomsnitt. Den enkle bevegelige gjennomsnittsmodellen beskrevet ovenfor har den uønskede egenskapen som den behandler de siste k-observasjonene, like og fullstendig ignorerer alle foregående observasjoner. Intuitivt bør tidligere data diskonteres på en gradvis måte - for eksempel bør den nyeste observasjonen få litt mer vekt enn 2. siste, og den 2. siste skal få litt mer vekt enn den 3. siste, og så videre. Den enkle eksponensielle utjevning SES-modellen oppnår dette. La oss angi en utjevningskonstant et tall mellom 0 og 1 En måte å skrive modellen på er å definere en serie L som representerer det nåværende nivået, dvs. lokal middelverdi av serien som estimert fra data til nåtid. Verdien av L til tid t beregnes rekursivt fra sin egen tidligere verdi som dette. Den nåværende glatteverdien er således en interpolasjon mellom den forrige glattede verdien og den nåværende observasjonen, hvor kontrollen av nærheten til den interpolerte verdien til de mest re cent observasjon Prognosen for neste periode er bare den nåværende glatteverdien. Tilsvarende kan vi uttrykke neste prognose direkte i forhold til tidligere prognoser og tidligere observasjoner, i en hvilken som helst av følgende ekvivalente versjoner. I den første versjonen er prognosen en interpolering mellom forrige prognose og forrige observasjon. I den andre versjonen blir neste prognose oppnådd ved å justere forrige prognose i retning av den forrige feilen med en brøkdel. erroren som ble gjort på tidspunktet t I den tredje versjonen er prognosen en eksponentielt vektet dvs. nedsatt glidende gjennomsnitt med rabattfaktor 1.Interpoleringsversjonen av prognoseformelen er den enkleste å bruke hvis du implementerer modellen på et regneark det passer i en enkelt celle og inneholder cellehenvisninger som peker på forrige prognose, den forrige observasjon, og cellen der verdien av er lagret. Merk at hvis 1, SES-modellen er ekvivalent med en tilfeldig turmodell med trevekst Hvis 0 er SES-modellen ekvivalent med middelmodellen, forutsatt at den første glattede verdien er satt lik gjennomsnittet Tilbake til toppen av siden. Gjennomsnittsalderen for dataene i den enkle eksponensielle utjevningsprognosen er 1 relativ til den perioden som prognosen beregnes for. Dette er ikke ment å være åpenbart, men det kan enkelt vises ved å evaluere en uendelig serie. Derfor har den enkle glidende gjennomsnittlige prognosen en tendens til å ligge bak vendepunkter med ca. 1 perioder. For eksempel når 0 5 Laget er 2 perioder når 0 2 Laget er 5 perioder når 0 1 Laget er 10 perioder, og så videre. For en gitt gjennomsnittsalder, dvs. mengdeforsinkelse, er den enkle eksponensielle utjevning SES-prognosen noe bedre enn den enkle bevegelsen gjennomsnittlig SMA-prognose fordi den plasserer relativt mer vekt på den siste observasjonen - det er litt mer lydhør overfor endringer som skjedde i nyere tid. For eksempel har en SMA-modell med 9 vilkår og en SES-modell med 0 2 begge en gjennomsnittlig alder av 5 for da ta i sine prognoser, men SES-modellen legger mer vekt på de siste 3 verdiene enn SMA-modellen, og samtidig gliser den ikke helt over verdier som er mer enn 9 perioder gamle, som vist i dette diagrammet. En annen viktig fordel ved SES-modellen over SMA-modellen er at SES-modellen bruker en utjevningsparameter som er kontinuerlig variabel, slik at den enkelt kan optimaliseres ved å bruke en solveralgoritme for å minimere gjennomsnittlig kvadratfeil. Den optimale verdien av SES-modellen for denne serien viser seg å være 0 2961, som vist her. Gjennomsnittlig alder av dataene i denne prognosen er 1 0 2961 3 4 perioder, noe som ligner på et 6-rent simpelt gjennomsnitt. De langsiktige prognosene fra SES-modellen er en horisontal rettlinje som i SMA-modellen og den tilfeldige turmodellen uten vekst. Vær imidlertid oppmerksom på at konfidensintervallene som beregnes av Statgraphics, divergerer nå på en rimelig måte, og at de er vesentlig smalere enn konfidensintervaller for rand om gangmodellen SES-modellen antar at serien er noe mer forutsigbar enn den tilfeldige turmodellen. En SES-modell er egentlig et spesielt tilfelle av en ARIMA-modell, slik at den statistiske teorien om ARIMA-modeller gir et godt grunnlag for å beregne konfidensintervall for SES-modell Spesielt er en SES-modell en ARIMA-modell med en ikke-sesongforskjell, en MA 1-term, og ingen konstant term, ellers kjent som en ARIMA 0,1,1-modell uten konstant. MA 1-koeffisienten i ARIMA-modellen tilsvarer kvantum 1 i SES-modellen For eksempel, hvis du passer på en ARIMA 0,1,1 modell uten konstant til serien analysert her, viser den estimerte MA 1 koeffisienten seg å være 0 7029, som nesten er nesten en minus 0 2961. Det er mulig å legge til grunn for en ikke-null konstant lineær trend på en SES-modell. For å gjøre dette, bare angi en ARIMA-modell med en ikke-soneforskjell og en MA 1-term med en konstant, dvs. en ARIMA 0,1,1 modell med konstant De langsiktige prognosene vil da har en trend som er lik den gjennomsnittlige trenden observert over hele estimeringsperioden. Du kan ikke gjøre dette i forbindelse med sesongjustering, fordi sesongjusteringsalternativene er deaktivert når modelltypen er satt til ARIMA. Du kan imidlertid legge til en konstant lang langsiktig eksponensiell trend til en enkel eksponensiell utjevningsmodell med eller uten sesongjustering ved å benytte inflasjonsjusteringsalternativet i prospektprosedyren. Den aktuelle inflasjonsprosentveksten per periode kan estimeres som hellingskoeffisienten i en lineær trendmodell som er montert på dataene i sammen med en naturlig logaritme transformasjon, eller det kan være basert på annen uavhengig informasjon om langsiktige vekstutsikter. Tilbake til toppen av siden. Brett s Lineær, dvs. dobbel eksponensiell utjevning. SMA-modellene og SES-modellene antar at det ikke er noen trend av noe som helst i dataene som vanligvis er OK eller i det minste ikke for dårlig for 1-trinns prognoser når dataene er relativt nei sy, og de kan endres for å inkorporere en konstant lineær trend som vist over. Hva med kortsiktige trender Hvis en serie viser en varierende veksthastighet eller et syklisk mønster som skiller seg klart ut mot støyen, og hvis det er behov for å prognose mer enn 1 år framover, kan estimering av en lokal trend også være et problem. Den enkle eksponensielle utjevningsmodellen kan generaliseres for å oppnå en lineær eksponensiell utjevning av LES-modell som beregner lokale estimater av både nivå og trend. Den enkleste tidsvarierende trenden modellen er Brown s lineær eksponensiell utjevningsmodell, som bruker to forskjellige glatte serier som er sentrert på forskjellige tidspunkter. Forutsigelsesformelen er basert på en ekstrapolering av en linje gjennom de to sentrene. En mer sofistikert versjon av denne modellen, Holt s, er diskuteres nedenfor. Den algebraiske formen av Browns lineære eksponensielle utjevningsmodell, som for den enkle eksponensielle utjevningsmodellen, kan uttrykkes i en rekke forskjellige, men e kvivalente former Standardformen til denne modellen uttrykkes vanligvis som følger. La S betegne den enkeltglattede serien som er oppnådd ved å anvende enkel eksponensiell utjevning til serie Y Det er verdien av S ved period t gitt av. Husk at under enkel eksponensiell utjevning ville dette være prognosen for Y ved periode t 1 Så la S betegne den dobbeltslettede serien oppnådd ved å anvende enkel eksponensiell utjevning ved å bruke det samme til serie S. Til slutt er prognosen for Y tk for noen k 1, gis av. Dette gir e 1 0, dvs lurer litt, og la den første prognosen ligne den faktiske første observasjonen, og e 2 Y 2 Y 1 hvoretter prognosene genereres ved hjelp av ligningen over Dette gir de samme monterte verdiene som formelen basert på S og S hvis sistnevnte ble startet med S 1 S 1 Y 1 Denne versjonen av modellen brukes på neste side som illustrerer en kombinasjon av eksponensiell utjevning med sesongjustering. Helt s lineær eksponensiell utjevning. s LES-modellen beregner lokale estimater av nivå og trend ved å utjevne de siste dataene, men det faktum at det gjør det med en enkelt utjevningsparameter, stiller en begrensning på datamønstrene som det er i stand til å passe nivået og trenden, ikke tillates å variere ved uavhengige priser Holt s LES-modellen løser dette problemet ved å inkludere to utjevningskonstanter, en for nivået og en for trenden. På et hvilket som helst tidspunkt t, som i Browns modell, er det et estimat L t på lokalt nivå og et estimat T t av den lokale trenden Her beregnes de rekursivt fra verdien av Y observert ved tid t og de forrige estimatene av nivået og trenden ved to likninger som gjelder eksponensiell utjevning til dem separat. Hvis estimert nivå og trend ved tid t-1 er henholdsvis L t 1 og T t 1, vil prognosen for Y t som ville vært blitt gjort på tidspunktet t-1 være lik L t-1 T t 1 Når den virkelige verdien observeres, vil det oppdaterte estimatet av nivå beregnes rekursivt ved å interpolere mellom Y t og dets prognose, L t-1 T t-1, med vekt på og 1. Forandringen i estimert nivå, nemlig L t L t 1, kan tolkes som en støyende måling av trend på tiden t Det oppdaterte estimatet av trenden beregnes deretter rekursivt ved å interpolere mellom L t L t 1 og det forrige estimatet av trenden, T t-1 ved bruk av vekt og 1.Tolkningen av trend-utjevningskonstanten er analog med den for nivåutjevningskonstanten. Modeller med små verdier antar at trenden endrer seg bare veldig sakte over tid, mens modeller med større antar at det endrer seg raskere. En modell med en stor mener at den fjerne fremtiden er veldig usikker, fordi feil i trendestimering blir ganske viktig når prognose mer enn en periode fremover. Tilbake til toppen av side. Utjevningskonstantene og kan estimeres på vanlig måte ved å minimere den gjennomsnittlige kvadriske feilen i 1-trinns prognosene. Når dette gjøres i Statgraphics, viser estimatene seg å være 0 3048 og 0 008. Den svært små verdien av betyr at modellen antar svært liten endring i trenden fra en periode til den neste. Så i utgangspunktet prøver denne modellen å estimere en langsiktig trend. I analogi med begrepet gjennomsnittlig alder av dataene som brukes til estimering av t Han lokale nivå av serien, er gjennomsnittsalderen for dataene som brukes til å estimere den lokale trenden, proporsjonal med 1, men ikke akkurat lik den. I dette tilfellet viser det sig å være 1 0 006 125 Dette er ikke veldig presis tall forutsatt at nøyaktigheten av estimatet ikke er virkelig 3 desimaler, men det er av samme generelle størrelsesorden som prøvestørrelsen på 100, så denne modellen er gjennomsnittlig over ganske mye historie i estimering av trenden. Prognosen nedenfor viser at LES-modellen anslår en litt større lokal trend på slutten av serien enn den konstante trenden som er estimert i SES-trendmodellen. Den estimerte verdien er nesten identisk med den som oppnås ved å montere SES-modellen med eller uten trend , så dette er nesten den samme modellen. Nå ser disse ut som rimelige prognoser for en modell som skal estimere en lokal trend. Hvis du eyeball denne plottet, ser det ut som om den lokale trenden har vendt nedover på slutten av serie Wh ved har skjedd Parametrene til denne modellen har blitt estimert ved å minimere den kvadratiske feilen i 1-trinns prognoser, ikke langsiktige prognoser, i hvilket tilfelle trenden ikke gjør stor forskjell. Hvis alt du ser på er 1 Forsinkede feil ser du ikke det større bildet av trender over si 10 eller 20 perioder. For å få denne modellen mer i tråd med vår øyeeball-ekstrapolering av dataene, kan vi manuelt justere trend-utjevningskonstanten slik at den bruker en kortere basislinje for trendestimering. For eksempel, hvis vi velger å angi 0 1, er gjennomsnittsalderen for dataene som brukes til å estimere den lokale trenden 10 perioder, noe som betyr at vi gjennomsnittsverdi trenden over de siste 20 perioder eller så Her ser prognoseplottet ut om vi stiller 0 1 mens du holder 0 3 Dette ser intuitivt rimelig ut på denne serien, selv om det er sannsynligvis farlig å ekstrapolere denne trenden mer enn 10 perioder i fremtiden. Hva med feilstatistikken her er en modell sammenligning f eller de to modellene som er vist ovenfor, samt tre SES-modeller. Den optimale verdien av SES-modellen er ca. 0 3, men tilsvarende resultater med litt mer eller mindre respons er henholdsvis oppnådd med 0 5 og 0 2. En Holt s lineær utglatting med alfa 0 3048 og beta 0 008. B Holt s lineær utjevning med alfa 0 3 og beta 0 1. C Enkel eksponensiell utjevning med alfa 0 5. D Enkel eksponensiell utjevning med alfa 0 3. E Enkel eksponensiell utjevning med alfa 0 2.De statistikkene er nesten identiske, slik at vi virkelig ikke kan velge på grunnlag av 1-trinns prognosefeil i dataprøven. Vi må falle tilbake på andre hensyn. Hvis vi sterkt tror at det er fornuftig å basere dagens trendoverslag over hva som har skjedd i løpet av de siste 20 perioder, kan vi gjøre et tilfelle for LES-modellen med 0 3 og 0 1 Hvis vi vil være agnostiker om det er en lokal trend, kan en av SES-modellene være enklere å forklare og vil også gi mer middl e-of-the-road prognoser for de neste 5 eller 10 periodene. Tilbake til toppen av siden. Hvilken type trend-ekstrapolering er best horisontal eller lineær? Empiriske bevis tyder på at hvis dataene allerede er justert om nødvendig for inflasjon, så Det kan være uhensiktsmessig å ekstrapolere kortsiktige lineære trender svært langt inn i fremtiden. Trender som tydeligvis i dag kan løsne seg i fremtiden på grunn av ulike årsaker som forverring av produkt, økt konkurranse og konjunkturnedganger eller oppgang i en bransje. Derfor er enkel eksponensiell utjevning utføres ofte bedre ut av prøven enn det ellers kunne forventes, til tross for den naive horisontale trendenes ekstrapolering. Dampede trendmodifikasjoner av den lineære eksponensielle utjevningsmodellen brukes også i praksis til å introdusere en konservatismeddel i dens trendfremskrivninger. Den dempede trenden LES-modellen kan implementeres som et spesielt tilfelle av en ARIMA-modell, spesielt en ARIMA 1,1,2-modell. Det er mulig å beregne konfidensintervall arou nd langsiktige prognoser produsert av eksponentielle utjevningsmodeller, ved å betrakte dem som spesielle tilfeller av ARIMA-modeller Pass på at ikke alle programmer beregner konfidensintervaller for disse modellene riktig. Bredden på konfidensintervaller avhenger av RMS-feilen til modellen, ii typen av utjevning enkel eller lineær iii verdien av utjevningskonstanten s og iv antall perioder fremover du progniserer Generelt sprer intervallene raskere som blir større i SES-modellen, og de sprer seg mye raskere når de er lineære i stedet for enkle utjevning er brukt Dette emnet blir diskutert videre i ARIMA-modellene i notatene. Gå tilbake til toppen av siden.

Comments

Popular posts from this blog

Tradeking Options Handel

Flytte Gjennomsnittet Ala Kang Gun